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4. Reduced-order Models 

The exact description of systems with distributed elements is often quite complex and too 
difficult to solve. For this reason, the approach using the approximation by reduced elements 
is frequently used. Such a reduced model is composed by reduced elements that replace the 
distributed elements in such a way that have, at the point to which they are reduced, the same 
effect as the original distributed system. The reduced system, having only one reduced mass 
mr and one reduced compliance cr, has only one resonant frequency that corresponds to the 
first mode of vibration of the given structure. This approximation is thus useful only for a 
limited frequency range starting at low frequencies and ending at the vicinity of the first mode 
of vibrations.  

We will examine in this chapter basic structural elements with the goal to connect their 
detailed mechanical behaviour to equivalent lumped-circuit representations. These structures 
are axially loaded beams, transversely loaded beams, and plates. We will also consider the 
influence of specific effects on the behaviour of these structures.  

The general rule that can be adopted for reduced elements calculation is based on the 
knowledge of the deformation curve of a structure. If we are looking for a reduced mass, we 
compare the kinetic energy of the distributed mass of the analyzed structure with that of the 
corresponding reduced mass having the same displacement as the point of the structure to 
which the reduction is done. The point to which the reduction is done is usually the point of 
maximal deflection. Equality relation for kinetic energies is: 
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where v is the speed of a structure mass element, dm and v0 is the speed at the point of the 
reduction. If we suppose the harmonic movement, with the displacements u and u0, 
corresponding to the speeds v and v0, the reduced mass will be: 
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The reduced compliance can be obtained from the static deformation by the load F in the 
point of reduction. If this force gives rise to the deflection u0, the reduced compliance is given 
by: 
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An alternative approach can be used in the case when natural frequencies of the examined 
structure are estimated. Supposing that we know one of two reduced elements, the second can 
be calculated from the simple relation: 
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The fact that the first approach is based on the static solution of system behaviour whereas the 
second approach is based on the dynamical behaviour can explain possible differences.  
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4.1 Axially Loaded Beams 

The simplest structure is a slender beam with rectangular cross section of the length L, the 
width w, and the height h. We show the beam with one fixed end in the Figure 4.1. In this 
typical one-dimensional problem, the stress corresponding to the axial load force T = F/wh 
creates the strain S = ∆L/L. 

 
Figure 4.1 Axially loaded beam. 

Based on the basic definition of elasticity, we can obtain the relation for the strain as: 
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In the static case, the force, F and the deformation ∆L are constant along the beam. The static 
compliance, cs, and the spring constant, k, of the beam functioning as a spring element in a 
mechanical structure is then defined as: 
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The behaviour of the beam in the dynamic vibrations must be analyzed, based on the solution 
of the equation of motion corresponding to this case. The equation of motion for the 
longitudinal displacement ux has the form: 
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The solution for displacement ux corresponding to the boundary conditions shown in 
Figure 4.1 is: 
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In the Expression (8), uL is the displacement at the free end of the beam, k is the wave 
number, and x is the coordinate. The strain along the beam is defined by the relation: 
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We can obtain from the Hooke’s law the stress corresponding to the strain as: 
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Further, we can obtain by considering x=L, the stress TL and hence the force FL, at the free 
end of the beam, and finally, we can get for the mechanical impedance, ZmL at this point, if 
supposing the harmonic movement, the following expression: 
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The Expression (11) can be written by replacing the goniometric functions by its 
decomposition to the series as: 
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where me is the equivalent mass and cn is the compliance equivalent to the mode of vibrations 
n as given in following expressions: 
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The mechanical impedance of an axially loaded beam can be thus represented for each mode 
by the mass, the compliance, and optionally the resistance connected in series. The complete 
description of the beam is the parallel assembly of branches corresponding to each mode as 
shown in Figure 4.2. 

 
Figure 4.2 Equivalent circuit for longitudinal wave in a beam. 

4.2 Transversely Loaded Beams 

We will assume, in this paragraph the beams of rectangular cross-section with the length 
much greater than either of their transverse dimensions. Before we will consider bending-type 
deformations resulting from the transverse loading of beams we will examine types of 
supports and types of loads on structures that can bend. The basic kinds off supports that are 
mathematically defined in the Chapter 2 are shown in Figure 4.3. The functional equivalent of 
all these types of support can be encountered in MEMS devices.  

 
Figure 4.3 Different types of structure support. 
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The clamped (also called fixed or built-in) support doesn’t permit the horizontal and vertical 
movement at the support nor a non-zero slope at the support. There is no constraint on the 
displacement or the slope in the case of free end. A beam with a free end is called a cantilever 
beam. The hinged (also called pinned or simple support) fixes both the vertical and horizontal 
position of the beam end, but does not restrict its slope. The sliding support fixes the vertical 
position of the beam, but does not restrict its horizontal position and slope. 

Figure 4.4 shows two different types of external transverse load that can be applied to beams.  

 
Figure 4.4 Different types of loads: a) Point load, b) Distributed load. 

A point load F can be applied at any position along the beam length. We will suppose that F 
is the total force acting at a position x along the length of a beam, uniformly distributed across 
its width. Sometimes, if the force per unit width, F’ is specified, the total force F = F’w. A 
distributed load q can be applied to a portion of the beam length. The symbol q is used for the 
force per unit length of beam, uniformly distributed across its width. If a portion of a beam is 
loaded by a uniform pressure P, the equivalent beam load can be expressed as q = Pw. 

We can apply the general rules described at the beginning of this chapter for the calculation of 
a beam reduced parameters. We need to know the deformation curve corresponding to each 
specific case, given by a type of support and a type of load, for the reduced mass calculation. 
The compliance of a beam is calculated from the deflection caused by a known force.  

For a cantilever, we can obtain the displacement along its length as: 
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The displacement of the free end (x=0: point at which reduced elements are calculated) is 
equal to: 
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The reduced mass of a cantilever can be obtained from Equation (2) after the substitution 
from Equations (14) and (15) as: 
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The term mL is mass per unit length, m is beam total mass. The reduced compliance will be 
obtained by comparing the Equations (3) and (15), which gives the following value: 
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For a cantilever with a rectangular cross-section this gives: 
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The displacement along the length of a beam simply supported on his both ends is: 
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We can obtain, similarly as in the preceding case, the reduced elements corresponding to this 
case. For a beam of a rectangular cross-section we thus have: 
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Finally, the reduced elements of a beam clamped on his both ends, having a rectangular 
cross-section, are given by following expressions: 
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Similar results can be obtained if we calculate the frequency of the first mode of vibration 
from the general expression [PLU 99]: 

4
L

ii
Lm

EI
Af =                     (22) 

The values of coefficients Ai for different types of support are given in Table 4.1. 

Modes 
Type of Beam Support 

1 2 3 

Clamped-free 0.56        3.51 9.82 

Clamped-clamped 3.56 9.82 19.26 

Hinged-hinged 1.57 6.29 14.15 

Clamped- hinged 2.45 7.96 16.55 

Table 4.1 Coefficients Ai for calculation of modes of vibrations of beams. 

If a beam containing several layers of different materials is analyzed, the bending stiffness 

EI and mass m terms must be replaced with composite bending stiffness EI  and composite 

mass m . These terms are defined as [SME 00]: 
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where N is the number of layers in the composite beam, and Ei, Ii, mi are properties of the ith 
layer in the cross-section of the beam.  
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The residual stress has an important effect to the mechanical behaviour of MEMS structures. 
This stress appearing after the fabrication process can be decomposed into two components. 
The thermal mismatch stress is created by the deposition of thin layers to the substrate at the 
higher temperature and by cooling to room temperature. The intrinsic stress covers all other 
types of stresses as that occurring during chemical reactions, doping, epitaxial growth, 
evaporation, sputtering, and other processes. Residual stresses can have three important 
effects on beams. Residual stresses in some cases modify the bending stiffness; nonuniform 
residual stresses can cause beams to curl; and compressive residual stresses are source of 
beam buckling. Residual stresses and thus their effect on the beam properties can be modified 
by thermal processes such as annealing.  

4.3 Transversely Loaded Plates 

The bending behaviour of plates can be understood with a direct extension of the bending of 
beams. Unlikely to beams, the transverse contraction is equal to zero in directions parallel to a 
plate surface during its bending or axial elongation. The stress-strain relation in plates for a 
longitudinal movement is written as: 
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where σ is the Poisson ratio. The quantity E/(1-σ²) is called plate modulus.  

We can use the same approach for the approximation of a plate by its reduced elements. From 
the deformation curve corresponding to a given plate support and a type of load, we can 
calculate the reduced mass, and from the displacement caused by this load we can obtain the 
reduced compliance. As the analysis of plate deformations is more difficult than in the case of 
a bar, we will do the reduction only for two symmetrical cases of a circular plate. We will 
suppose for this reason that a small-displacement deformation curve of a simply supported 
circular plate can be approximated by sphere and thus can be described by a second order 
expression of a following form: 
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The symbol R is a plate radius. The reduced mass, mr for this case is obtained from the 
Expression (2) after substituting the displacement given by the Expression (25). The reduced 
compliance, cr is obtained from the displacement caused by the point force at the centre of a 
plate that can be for approximated by the following value: 
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Both reduced elements are given by following expressions: 
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For a clamped circular plate we will suppose as a first approximation a deformation curve of 
a form:  
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The displacement at the centre corresponding to a force acting at the same point is: 
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The reduced elements corresponding to this case are given by following expressions: 
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If a thin plate of constant thickness vibrating transversely has a simple geometric form, the 
frequency and forms of vibrations modes can be determined analytically. The frequency of 
the ith mode of vibration can be calculated from the expression of the general form: 
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The term B, called flexural rigidity of the plate is defined by Expression 2.24. The symbol a is 
used for diameter in the case of circular plate and for the side in the case of square plate. The 
values of coefficients C1 for different forms of thin plates with different types of support are 
given in Table 4.2. 

Form of Plate Type of Support C1 

Clamped on Edge 6.23 

Hinged on Edge 3.10 Circular 

Clamped in Centre 2.29 

Clamped on 1 Edge,  
Free on 3 Edges 0.53 

Clamped on 4 Edges 5.47 Square 

Hinged on 4 Edges 3.00 

Table 4.2 Coefficients Ci for calculation of modes of vibrations of plates. 

The approximations we have used above were based on a small-displacement assumption and 
are valid only in some extent. If plate deflection is comparable or bigger than a plate 
thickness, more general expression must be used. In some applications, the relation between 
the plate displacement and the pressure difference P, instead of the point force, is of interest. 
The expression, which relates the deflection in the centre to the applied pressure, is the 
following: 
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This equation is nonlinear in u0 and cannot be solved for u0. The first term represents the 
stiffness associated with the bending of the thin plate. The second term represents the stiffness 
associated with the stretching of the plate that introduces nonlinearity. For small-deflection 
cases, if u0 < h, the second term can be neglected and simplified expression is: 
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