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1. Lumped-elements Systems 

Modelling and/or analysis methods based on lumped-elements can be applied on systems that 
can be considered as linear and without any propagation effects. The first condition can be 
fulfilled under small-signal conditions, the second one introduces the limits for system 
dimensions to wavelength ratio that must be sufficiently smaller than 1. In this case, a 
mechanical system can be decomposed into a certain number of ideal elements carrying 
uniquely the elastic or potential energy or being dissipative. In this way, the system can be 
replaced by non-deformable and non-dissipative mass elements, by zero-mass and non-
dissipative elastic elements, and by non-deformable and zero-mass dissipative elements. 
These elements are analogous to electrical inductors, capacitors, and resistors; therefore all 
mathematical tools developed for these electrical elements can be adopted for lumped-
elements mechanical systems. Various circuit elements connected at nodes form a circuit that 
is governed by generalizations of Kirchhoff’s Laws. We will use the concept of conjugate 
power variables to quantify the relations within a circuit. In the most general case, the two 
conjugate power variables are an effort e(t) and a flow f(t). The dimension of the product e.f is 
a power. These domain-specific variables are linked with variables describing the element 
behaviour. There are five types of ideal one-port elements and there are also elements with 
multiple terminals. Two variables assigned to element terminals are through variable and 
across variable. A through variable traversing an element can be associated with the current 
(or flow) in electric circuits and an across variable identified between two terminals 
corresponds to the voltage (or effort). There is a number of conventions used for assignments 
of variables. The preceding example from electrical circuits corresponds to the ‘effort-to-
voltage’ convention. The convention ‘flow-to-voltage’ is used in mechanical circuits, while 
the ‘effort-to-voltage’ convention is used in acoustic circuits. There is also the convention 
called ‘HDL’ that is used when formulating abstract circuit elements in hardware-description 
languages. In this case, an effort and a displacement are used as a pair of system variables. A 
displacement is defined, based on a flow variable, as: 

)t(qdt)t(f)t(q 0

t

0t
+= ∫           (1) 

In the ‘HDL’ convention, a displacement is assigned as the across variable, an effort as the 
through variable and the product e.f corresponds to energy. In the thermal energy domain, the 
temperature, T, is assigned as the across variable and the heat current, dQ/dt, is the through 
variable. Table 1.1 summarizes different conventions discussed above and shows their basic 
features. 

Convention Across 
Variable 

Through 
Variable Product Principal Use 

Effort-to-Voltage e f Power 
Electrical Circuits 
Acoustic Circuits 
Mechanical Circuits 

Flow-to-Voltage f e Power Mechanical Circuits 

HDL q e Energy Mechanical Circuits 
in HDL Representation 

Thermal T dQ/dt Watt-Kelvin Thermal Circuits 

Table 1.1 Conventions used in different domains. 
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The choice of convention used for a given physical domain and for a given type of device is 
not unique. Any of the conventions can be used to reach the same conclusions about the 
device behaviour. It is therefore important to check the assignment convention used by other 
authors when comparing their approaches. 

Kirchhoff’s Laws, in its general form, reveal a unique relationship between efforts, flows, and 
element characteristics. Kirchhoff’s Voltage Law (KVL) states that the oriented sum of all 
across variables, ai, around any closed loop is zero. KVL can be expressed by the following 
expression: 

0a i =∑              (2) 

Kirchhoff’s Current Law (KCL), saying that the sum of all through variables, bi, entering a 
node is zero, can be expressed as: 

0bi =∑              (3) 

Lumped elements can be classified according to the number of terminals used to join them to 
a circuit. A pair of terminals that carry the same through variable is called a port. There are 
three basic one-port elements, and two independent source elements, that form any circuit. 
For derivator or generalized inductor, L, the across variable is proportional to the derivative 
of the through variable: 

dt

)b(d
La =              (4) 

The integrator or generalized capacitor, C, is a one-port element for which the across variable 
is proportional to the integral of the through variable: 

∫= bdt
C

1
a              (5) 

The generalized resistor, R, is defined by the relation between the across variable and the 
through variable: 

bRa =           (6) 

The symbols used for the three basic one-port elements are shown in Figure 1.1. 

 
Figure 1.1 Basic one-port elements in the ‘effort-to-voltage’ convention. 

The ratio of the Laplace transform of the across variable to the Laplace transform of the 
through variable is called immitance. This relation can be written, for the case of harmonic 
variables, as a ratio of respective phasors: 

b̂

â
V =          (7) 



Libor.Rufer@imag.fr : Microsystems Course / Modelling / Lumped-elements 
 

3 

In the ‘effort-to-voltage’ convention, the immitance is equal to the impedance; in the ‘flow-to-
voltage’ convention, the immitance is equal to the admittance.  

Figure 1.2 shows two independent source elements, source of the across variable and source 
of the through variable. 

 
Figure 1.2 Independent source elements in the circuit representation. 

Among the two-port elements there are in particular a transformer and a gyrator that are 
useful especially in the theory of transducers for translating the variables from one energy 
domain to another. They both are lossless and memoryless. The total power entering the 
element through both ports of a lossless two-port must be equal to zero. The element must 
therefore satisfy the following equation: 

0baba 2211 =+      (8) 

Both, the definition of a transformer, shown here in the form of the cascade matrix: 
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and that of a gyrator: 
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satisfy the condition for a lossless two-port element. Circuit symbols used for these two-port 
elements are shown in Figure 1.3. 

 
Figure 1.3 Transformer and gyrator circuit symbols. 

1.1 Electro-mechanical Analogy 

The electro-mechanical analogy is developed under the hypothesis that the system is 
composed of ideal components carrying either the kinetic or potential energy or are of purely 
dissipative behaviour. Such components, separated in the space, are represented by masses 
localized at a point, perfectly elastic mass-less springs, and dissipative elements. This 
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approximation can be used under the condition that these components are much smaller than 
the wavelength of an acting signal. A mechanical system can thus be symbolized by a circuit 
composed of three basic elements: mass, compliance and resistance (see Fig. 1.4).  

 
Figure 1.4 Symbolic elements of a mechanical system. 

Force and velocity are two basic variables used in the description of translational mechanical 
systems. The relation between these two variables applied to the mass is given by the 
Newton’s Law: 

dt
dv

mF =             (11) 

The relation valid for an elastic element obeying the Hooke’s Law is: 

∫== vdt
c
1

ukF      (12) 

where u is the displacement, and k is the spring factor. We can notice the simple relation 
between the compliance and the spring factor: 

k/1c =          (13) 

For friction losses we can write the relation between force and velocity in the form: 

vrF =         (14) 

We can notice the similarity between the expressions (11), (12), (14), and (4), (5), (6). If 
considering the force as an effort variable and the velocity as a flow variable, the Effort-to- 
Voltage convention can be used for the description of a mechanical system by an analogue 
circuit. This convention, also called direct electro-mechanical analogy is summarized in the 
following table: 

Mechanical Variable Electrical Variable 
Force F[N] Voltage u [V] 
Velocity v [m/s] Courant i [A] 
Displacement u [m] Charge  q [C] 
Mass m [kg] Inductance L [H] 
Compliance c [m/N] Capacity C [F] 
Resistance r [kg/s] Resistance R [Ω] 

Table 1.2 Relations of direct electro-mechanical analogy. 

From the direct electro-mechanical analogy, we can deduce an equivalent circuit which is 
analogue to the symbolic circuit describing the mechanical system. The duality between 
symbolic and analogue circuit must be taken into account when creating the analogue circuit 
for the system analysis. This results in replacing the elements that share a common flow by 
elements connected in series in an equivalent circuit; and in connecting in parallel the 
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elements that share a common effort. Figure 1.5 (a) shows spring-mass-dashpot assembly 
where all three elements share the same flow and thus a common variation of displacement. 
The correct equivalent circuit is shown in Figure 1.5 (b). 

 
Figure 1.5 Symbolic (a) and equivalent (b) circuits of a mechanical system with shared flow. 

The immitance defined by the Expression (6) is in the case of the direct electro-mechanical 
analogy equal to the mechanical impedance. Its unit is mechanical Ohm and its dimension is 
Nsm-1. The mechanical admittance, the inverse value of mechanical impedance, is often called 
mobility.  

1.2 Electro-acoustic Analogy 

Acoustic lumped elements can be defined based on the hypothesis of the sound wavelength 
being long compared to the relevant physical length scales of the problem. Similarly as in the 
case of a mechanical system, three basic elements of a lumped acoustical system are: acoustic 
mass, ma, acoustic compliance, ca, and acoustic resistance ra. Figure 1.6 shows a 
representation of these elements in a symbolic diagram.  

 
Figure 1.6 Symbolic elements of an acoustic system. 

Acoustic pressure, p, and volume velocity, w = vA, are two basic variables used in the 
description of acoustic lumped element systems. The acoustical impedance, Za, is defined, 
similarly as in the preceding case, as:  

w
p

Za =       (15) 

Let us examine the effect of a simple harmonic acoustic wave, interacting with a tube of 
length l and cross-sectional area A. Pressure disturbance, p, across the ends of a tube caused 
by this acoustic wave will accelerate the mass of gas according to Newton’s law: 

dt
dw

m
dt
dw

A

m
p a2

==                 (16) 

Acoustic mass, ma, can thus be expressed as: 

A
l

m 0
a

ρ
=         (17) 
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Acoustic compliance is related to the elastic property of a gas enclosed in a volume V0. By 
using the relationship between volume and pressure for an adiabatic change in a gas, we can 
write an expression relating the pressure change, p, inside the volume V0 to the displacement, 
d, at its input: 

0

0
V

AdP
p

γ
=          (18) 

where g is the ratio of the specific heats at constant pressure and volume. We assume that the 
volume change produced by the displacement d is small compared to the volume V0. The 
relation between displacement and velocity for a simple harmonic motion is: 

ω
=

j
v

d       (19) 

The acoustic impedance of an enclosed volume is then: 

a0

0
a cj

1
Vj
P

Z
ω

=
ω
γ

=      (20) 

We can see from the preceding expression that the acoustic compliance is: 

0

0
a P

V
c

γ
=       (21) 

Acoustic resistance is an ideal component that represents either the transformation of the 
acoustic energy to the other form of energy or a radiation of the acoustic energy from the 
system. An acoustic resistance can be realized either by a tube or a slit (see Figure 1.7) where 
energy is lost because of viscous dissipation.  

 
 Figure 1.7 Capillary tube (a) and capillary slit (b). 

The relation between acoustic pressure, volume velocity and acoustic resistance, ra, is in the 
case of viscous losses given by: 

wrp a=                (22) 

When laminar flow conditions exist and the acoustic wavelength is long compared to the tube 
or slit length, then the acoustic resistance of slit with length l, width b, and height h is:  

bh

l12
r

3a
µ

=     (23) 

where µ is viscosity of gas. In the case of a tube of radius a, and length l, the acoustic 
resistance is: 

4a
a

l8
r

π

µ
=     (24) 
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The acoustic impedance of a slit or of a tube can be generally considered as a complex value 
composed of a real part corresponding to a resistance and of an imaginary part given by a 
reactive component, mass. For the harmonic motion we can write: 

aaa mjrZ ω+=     (25) 

For capillary tubes and slits, the acoustic mass is greater than that derived without considering 
a viscosity and given by the Expression (17). The corrected value of a mass of a slit is then: 

hb
l

2.1m 0
a

ρ
=      (26) 

In the case of a capillary tube, the mass is: 

2
0

a
a

l
3
4

m
π

ρ
=       (27) 

There are limiting values for critical dimensions of slits and tubes that ensure their resistive 
behaviour. In this case, the Expression (25) will be predominantly real. Supposing the 
propagating medium in the acoustic structure is the air, the limiting conditions for a slit height 
h and for a tube radius a at the maximal frequency are: 

f

103
a,

f

105
h

33 −−
<<<<     (28) 

We will consider the pressure as an effort variable and the volume velocity as a flow variable. 
The ‘effort-to-voltage’ convention will be used for the description of an acoustic system by an 
analogue circuit. This convention, also called electro-acoustic analogy, is summarized in the 
following table: 

Acoustic Variable Electrical Variable 
Acoustic Pressure P [Pa] Voltage u [V] 
Volume Velocity  w [m3/s] Courant i [A] 
Volume Displacement  X [m3] Charge  q [C] 
Acoustic Mass  m [kg/m4] Inductance L [H] 
Acoustic Compliance C [m5/N] Capacity C [F] 
Acoustic Resistance R [kg/m4s] Resistance R [? ] 

Table 1.3 Relations of the electro-acoustic analogy. 

Building an equivalent model, based on a symbolic diagram, is easier in the case of an 
acoustic system than in a mechanical one. All holes and slits can be directly replaced by 
masses and resistances and all closed volumes are replaced by compliances connected in one 
end with a common reference point. The transition from a symbolic to an equivalent circuit 
can be deduced from the example shown in Figure 1.8. 
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Figure 1.8 Symbolic circuit (a) and equivalent circuit (b) of an acoustic system. 
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